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Abstract
Factors affecting iron fouling in wet areas adjacent to roadways were investigated by collecting field rock cut and aque-
ous physicochemical data; developing exploratory predictive models; and developing geochemical models. Basic data 
included the identification of iron fouling from aerial imagery and field visits at 374 New Hampshire rock cut locations, 
and their associated rock-fill sites. Based on field water quality measurements from wet areas at 36 of the rock-fill sites, the 
occurrence of iron fouling was associated with higher values of specific conductance, lower concentrations of dissolved 
oxygen and lower pH compared to areas without iron fouling. A statistical model, using boosted regression trees, was 
developed to predict the occurrence of iron fouling in wet areas adjacent to roadways where rock-fill from nearby rock 
cuts was used in roadway construction. The model was used to develop a continuous iron fouling probability map for 
the state of New Hampshire that can be used to better understand the occurrence of iron fouling. Geochemical models 
illustrate how iron fouling of waters increases along roadways built with fill from sulfidic rock cuts as a result of acid gen-
eration from pyrite dissolution and ferrous iron  (Fe2+) oxidation and increases in areas with greater specific conductance 
from deicing runoff caused by cation exchange. More iron is precipitated as goethite in simulations that include pyrite, 
and in simulations with deicing salts added, indicating that rock-fill sites with rocks that contain pyrite and water with 
greater salt content could have enhanced iron fouling.

Keywords Iron fouling · Boosted regression trees · Rock-fill · Water chemistry · Water quality · Geochemical modeling

1 Introduction

Metasedimentary rocks with iron-rich biotite mica and 
(or) iron sulfide minerals, such as pyrite, are potential 
sources of iron in New Hampshire (NH) groundwater 
[1]. When rock cuts are made during road construction 
the excavated rock is commonly used as rock-fill in the 
nearby roadway base and along roadways to channel 
and drain storm water [2, 3]. These freshly excavated 

rocks may contain iron-rich minerals, which when 
exposed to oxygen, water, and bacteria, become weath-
ered. Subsequently, deposits of red–orange iron oxide 
minerals and biofilms may form (collectively referred to 
as iron fouling). Naturally occurring bacteria commonly 
catalyze iron reactions and form a biofilm. The iron-asso-
ciated water quality changes and microbial deposits can 
result in adverse impacts to aquatic organisms, water 
bodies, streambeds, and roadway structures. The NH 
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Department of Transportation (NHDOT) has identified 
iron fouling as a continuous maintenance challenge in 
stream crossings, culvert outlets, and other areas [4]. In 
this study, we develop a statistical model to predict iron 
fouling occurrence from road fill throughout NH and 
use mechanistic geochemical models to understand 
the geochemical conditions contributing to iron fouling.

Statistical models are commonly used to predict envi-
ronmental conditions including groundwater and sur-
face-water quality. Machine-learning methods such as 
boosted regression trees (BRT) are well suited to predic-
tion, fit complex, non-linear relations, handle different 
types of predictor variables (numeric, binary, categorical, 
etc.) and do not require data transformation or elimi-
nation of outliers to satisfy assumptions of traditional 
statistical methods [5]. BRTs combine regression trees, 
which explain the variation of a single response vari-
able by repeatedly splitting the data into more homo-
geneous groups; and boosting, a machine-learning 
technique that combines many simple models to get 
improved predictive performance [5, 6]. These methods 
have been used to develop predictive models for a range 
of environmental applications including groundwater 
quality [7–10], roadside air quality [11], landslide sus-
ceptibility [12], and ecological studies [5]. Studies com-
paring models developed with parametric techniques 
to those developed with machine-learning techniques 
have found that the machine learning tends to produce 
models with better predictive capabilities [8, 13]. This 
study is a new application of BRT models.

Acid rock drainage (ARD) is common at mine drain-
age sites [14, 15] and is often caused by the oxidation 
of iron sulfide minerals such as pyrite, and the subse-
quent release of acidity, sulfate, and dissolved metals 
including iron [16–19]. Iron fouling in runoff from rock 
cuts [20–22] and adjacent to blasted rock-fill used for 
roadway construction [23–25] is caused by a similar geo-
chemical mechanism to the one causing ARD at mine 
drainage sites [26]. Variations in temperature, dissolved 
oxygen (DO), pH, and specific conductance (SC) values 
in surface water can also affect the concentrations of 
iron [27] and subsequently, iron fouling. Higher salinity 
water can increase iron mobility [28, 29] and aggravate 
ARD at these sites.

The oxidation of 1 mol of pyrite by  O2 produces 1 mol 
of  Fe2+, 2 mol of SO4

2- and 2 mol of  H+ [30]:

The Fe(II) initially released may be oxidized to Fe(III), 
which is a more effective oxidant than oxygen [31–33], 
but the reaction is limited by the low aqueous  Fe3+ 

(1)
FeS2(s) + 7∕2O2(aq) + H2O(aq) → Fe2+

(aq)
+ 2SO2−

4 (aq)
+ 2H+

(aq)

concentrations at neutral pH. Further, the oxidation 
rates change by orders of magnitude depending on the 
pH and other factors such as microbial catalysis [17, 33, 
34]. Precipitates of Fe(III) oxyhydroxides may form, such 
as schwertmannite, ferrihydrite, or goethite, and can be 
colloidal [35, 36]. The oxidation of  Fe2+ initially causes a 
rise in pH because the oxidation of Fe(II) consumes pro-
tons, but then the  Fe3+ hydrolyzes and decreases the pH, 
and finally, the hydrolyzing ion precipitates as a mineral 
phase and further decreases the pH [17]:

The overall reaction of pyrite oxidation coupled to the 
precipitation of iron oxyhydroxides can be described as:

and results in the release of 4 mol of  H+ for each mole of 
pyrite oxidized. The resulting low-pH conditions can have 
adverse effects on aquatic life [37, 38]. The pH and chem-
istry of ARD waters are commonly buffered by carbonates, 
and iron solubility can be limited by precipitates of Al, Fe, 
Mn, Ba, and Sr, and by  SO4 complexation and sorption 
reactions [16, 39]. Furthermore, the effect of cations such 
as  Na+ (aq) exchanging for  Fe2+ in exchangeable cations 
represented by  FeX2(ex) (Eq. 4) and for  H+ in  HX(ex) (Eq. 5) 
can result in an increase in dissolved iron concentrations 
and a decrease in pH [28, 40, 41] and exacerbate iron 
fouling.

where the “X” with subscript “(ex)” represents exchangeable 
cations.

Cations such as  Na+ can compete with  Fe2+ for sorption 
or cation exchange sites on goethite and other iron min-
erals [28]; changes in pH, redox, temperature, biological 
activity, and photoreduction can affect the capacity of iron 
minerals for sorption or exchange [27, 42–44].

Road salt is commonly used along highways in the 
northern United States as a deicer [45–49] and commonly 
includes sodium chloride (NaCl), calcium chloride  (CaCl2), 
and magnesium chloride  (MgCl2) that dissolve to form ions 
including chloride  (Cl−), sodium  (Na+), and calcium  (Ca2+) 
[47]. A primary concern related to road deicing is the deg-
radation of surface water and groundwater that may be 
used for aquatic habitat [50–52].

Geology and geochemistry in NH at the state scale are 
associated with high iron concentrations in groundwater 

(2)Fe(OH)2+
(aq)

+ H2O(aq) → FeOOH(s) + 4H+
(aq)

(3)

FeS2(s) + 15∕4O2(aq) + 5∕2H2O(aq) → 2SO2−
4 (aq)

+ FeOOH(s) + 4H+
(aq)

(4)FeX2(ex) + 2Na+
(aq)

→ 2NaX(ex) + Fe2+
(aq)

(5)HX(ex) + Na+
(aq)

→ NaX(ex) + H+
(aq)

,
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[53]. However, iron has many mineralogical sources and 
mobilizing conditions [54]. For example, iron can be mobi-
lized under oxic, low pH conditions typical of ARD sites, 
or under anoxic (reducing) conditions with a neutral or 
higher pH [55–57]. Sulfides including pyrite commonly 
occur as secondary minerals in NH bedrock along frac-
tures, joints, faults, or in vuggy zones [58–60]. Reducing 
conditions are common in older groundwater [53], which 
can dissolve and transport iron from aquifers, rock-fill, 
and stream bed material before becoming oxygenated 
in surface water and precipitating iron. Also, independ-
ent redox microzones can form within the hyporheic zone 
of the streambed [61] providing an alternative source of 
reducing water.

Iron fouling affects water bodies and highway struc-
tures and is a concern for many transportation related 
jurisdictions [18, 20, 26, 62]. Although iron geochemistry 
is well understood, investigations of iron fouling related to 
rock cuts and rock-fill usage at roadway sites in NH are rare 
and are mostly qualitative. A study of iron fouling along 
roadways constructed with rock-fill in NH included a site 
in Meredith, where rock-fill consisting of biotite schist 
was a likely iron source to drainage water [4]. Iron fouling 
occurs at other sites across the state, but no systematic 
research has been undertaken. NHDOT has indicated that 
more quantitative research is needed to understand the 
occurrence and to help predict and mitigate iron fouling. 
A probability map is developed here to predict the likeli-
hood of iron fouling at untested locations throughout NH. 
In addition, geochemical models are presented to better 
understand the relations between high SC and iron fouling 
observed in the field.

2  Data and methods

2.1  Iron fouling data collection

A database of large roadcut locations maintained by the 
NHDOT [63] identified 374 rock cuts that are well dis-
tributed along the roadways throughout NH (Fig. 1). U.S. 
Geological Survey (USGS) National Hydrography Dataset 
(NHD) flowlines and waterbodies [64] were used to identify 
adjacent or nearby areas where rock-fill associated with 
each rock cut could potentially contact water and have 
the potential for iron fouling. If there were multiple rock-
fill sites near a rock cut, the closest rock-fill site was paired 
with the rock cut. Data used in this study were collected at 
both the rock-fill site and the associated rock cut site. Data 
from the rock cut sites included the presence or absence 
and color of rock weathering or staining (if present) and 
the identification of the bedrock for the statistical model. 
Data from the road fill locations included the presence or 

absence of iron fouling, all other variables used in the sta-
tistical model, and field measurements.

Imagery analyses using images from Google Earth 
(both aerial view and street views) and Esri ArcGIS World 
Imagery Map Services were conducted at all 374 sites to 
identify evidence of iron fouling at the rock-fill sites and 
weathering and staining at rock cuts. Leaf-off imagery 
provides a better view of the land surface beneath for-
est canopies at and near rock-fill sites and was avail-
able at 60% of the sites. A rock-fill site was identified 
as having iron fouling if the images indicated orange 
and/or reddish colors at streambeds, retention ponds, 
culverts, or wetlands near roadways. The imagery was 
also used to identify rocks that had minerals weathering 
in place to a red and brown color at the associated rock 
cuts, and the presence and color of staining of the rocks 

Fig. 1  Presence or absence of iron fouling at 374 rock-fill sites inNH
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from intermittent seepage of groundwater discharge at 
or below any visible fractures in the rock cut. “Rusty-
weathering” serves as an indicator of sulfidic-bearing 
bedrock units [65].

Field visits to 206 of the 374 rock-fill sites were con-
ducted in 2016 and 2017 to look for additional evidence 
of iron fouling or to confirm evidence of iron fouling 
documented from the imagery analysis (Table 1). Sites 
visited were chosen to provide a wide spatial distribu-
tion and did not depend on the presence or absence 
of iron fouling during the imagery analysis. During 
field visits, retention ponds, culverts or wetlands near 
roadways with fill locations were inspected for evi-
dence of iron fouling. A site that exhibited iron fouling 
in an aerial photo may not have exhibited fouling at 
the time of the field visit due to seasonal differences 
or changes over time at the site. Conversely, iron foul-
ing was sometimes seen during the field visit at sites 
that did not show iron fouling in the aerial photos. The 
temporal variability in the presence of iron fouling or 
the utility of aerial photos for the identification of iron 
fouling due to contrasts with ground cover and foliage, 
weather, and forest canopy leaf-on or leaf-off conditions 
was not assessed in this study. Thus, evidence of iron 
fouling during either the desktop reconnaissance or the 
field reconnaissance resulted in a positive identification 
of iron fouling.

Physicochemical data including pH, DO, SC and 
temperature were measured in situ in surface water in 
contact with rock-fill at 36 of the 374 rock-fill sites in 
October and November 2016 [66]. DO measurements 
were used primarily to distinguish oxic from anoxic con-
ditions that affect iron mobility. Sites with iron fouling 
and where water was discharging from springs or seeps 
downgradient of rock-fill were targeted preferentially 
for water quality measurements. The sites generally had 
small drainage areas, and many were surrounded by for-
ested land. Physicochemical data were quality assured 
and approved in accordance with USGS protocols [67].

2.2  Statistical modeling

A boosted regression tree (BRT) statistical model was 
developed to predict the probability of iron fouling occur-
ring at any location within NH. The model was fitted to 
the rock-fill dataset using the caret [68] and generalized 
boosted modules (gbm) [69] packages in the R computing 
environment [70].

The dependent variable in the model was the presence 
or absence of iron fouling at the 374 rock-fill locations as 
determined from desktop and field reconnaissance. Many 
potential predictor variables were assembled and evalu-
ated for use in the final model. The variables were primar-
ily derived from Geographic Information System (GIS) 
datasets and varied in scale from 1:24,000 to 1:500,000 
(Supplementary Materials Table S1). In the model devel-
opment, 111 individual predictor variables were tested 
and describe the geology, stream sediment and water 
chemistry, hydrology, and topography of the rock-fill site. 
Variables evaluated include 24 variables characterizing the 
lithology and lithogeochemical character of near-surface 
bedrock in NH [71]; stream sediment concentrations of 7 
major oxides and 10 trace elements [72]; 3 surface-water 
chemistry variables [72], and the bedrock geologic unit 
at each site [73]. Predictor variables that are categorical, 
such as bedrock geologic unit, were converted to one 
variable for each geologic unit. For example, there are 50 
bedrock geologic units represented in the model training 
dataset and each bedrock unit is a variable. The presence 
or absence of that bedrock unit at a location is represented 
as a binary value. Hydrologic and topographic variables 
including mean annual precipitation [74], predicted bed-
rock well yield [75], and elevation and slope characteris-
tics obtained from 1:24,000 and 1:250,000 digital elevation 
models (DEMs) [76] were also tested. Each data source con-
tains inherent uncertainties and sources of error; however 
these were not assessed in regard to the model outcome. 
Other potential predictor variables were identified but 
excluded in the final model, and these include soil chem-
istry information [77] and the soil survey geographic data-
base for NH (SSURGO) [78]. The soil chemistry data were 

Table 1  Iron fouling observed 
on aerial imagery and at field 
visits at 374 rock-fill sites in NH

Description Total

Number of rock-fill sites in NH 374
Rock-fill sites with a field visit 206
Rock-fill sites with iron fouling 71
Rock-fill sites with iron fouling observed at field visit 56
Rock-fill sites with iron fouling observed on aerial imagery 47
Rock-fill sites with iron fouling observed at both field visit and on aerial imagery 31
Rock-fill sites with iron fouling observed at field visit only and not on aerial imagery 25
Rock-fill sites with iron fouling observed on aerial imagery and not at field visit 3



Vol.:(0123456789)

SN Applied Sciences          (2020) 2:1073  | https://doi.org/10.1007/s42452-020-2849-2 Research Article

excluded due to the course resolution of the data (approxi-
mately 10 km2 grids) and the SSURGO data were excluded 
due to large areas of missing data for NH.

The 374 rock-fill sites were divided into a model training 
dataset containing 262 sites (70%) and a testing dataset con-
taining 112 sites (30%). The model training dataset was used 
to tune the model using tenfold cross-validation methods 
while the testing dataset was used to test the model pre-
diction capabilities of the most accurate model from model 
tuning and select a simpler model within one standard error 
of the most accurate model (1SE model). The testing data-
set was also used to evaluate the prediction capabilities of 
the 1SE model, however this cannot be considered an inde-
pendent validation because the same dataset was used to 
select the model. Model prediction results for the training 
and testing datasets are a probability value ranging from 0 
to 1 of the likelihood of iron fouling. A desktop reconnais-
sance or field reconnaissance positive identification of iron 
fouling resulted in an iron fouling presence designation in 
the model. A probability cut point of 0.5 was used to assign a 
presence or absence of iron fouling, i.e., probabilities greater 
than or equal to 0.5 are assigned a value of 1 indicating 
the presence of iron fouling, probabilities less than 0.5 are 
assigned a value of 0 indicating the absence of iron fouling.

The model was tuned using the caret package [68] in 
the R computing environment [70]. Metaparameters of 
the model adjusted during tuning were number of trees 
(number of iterations), interaction depth (maximum 
nodes per tree, where 2 means no variable interaction), 
shrinkage (learning rate), and minobsinnode (minimum 
number of observations in each terminal node of a tree). 
The model tuning grid consisted of 640 combinations 
of the metaparameters. The most accurate model from 
tenfold cross-validation tuning in caret was determined. 
Machine-learning models tend to overpredict to model 
training data and less complex models typically have 
better prediction metrics when applied to new data [8]. 
Less complex models that were within one standard 
error of the most accurate tuning model (1SE models) 

were tested on the testing data to determine if better 
model prediction was possible. Following the selection 
of a 1SE model, the model was run through a variable 
reduction loop that sequentially removes the variable of 
least influence and tests the predictive capability of the 
model on testing data with the remaining variables. The 
number of variables in the final model was chosen with 
the goal of creating a simpler model that does not result 
in a decrease in predictive performance of the model.

Metrics used to evaluate model prediction were total 
accuracy, sensitivity, specificity, Kappa, and area under the 
receiver operating characteristic curve (ROC) (Table 2). 
Total accuracy is the ratio of correct model predictions to 
known values. Sensitivity is the ratio of correct predictions 
of iron fouling to known locations of iron fouling, or true 
positives. Locations with predicted probabilities of iron 
fouling greater than 0.5 are assigned to the presence of 
iron fouling. Specificity is the ratio of correct predictions 
of no iron fouling to known locations without iron fouling 
(probabilities < 0.5), or true negatives. The Kappa statistic 
is also a measure of agreement between model predic-
tions and observations but includes expected accuracy 
under chance agreement. Kappa values range from 0 to 1, 
with a value of 1 indicating complete agreement [79]. The 
area under the ROC is an indicator of model prediction 
and considers using all possible cut-points (not only 0.5) 
to compare predictions with observations. Values of ROC 
range from 0 to 1 with 1 indicating total agreement [80].

After the selection of a final model a probability map 
that covers the state of NH was produced. The map indi-
cates the probability of iron fouling occurring at any loca-
tion in the state if bedrock from that location were quar-
ried, used as road fill, and then came into contact with 
water. To create this map from the model, each predictor 
variable was rendered into a GIS raster of 30 m resolution, 
exported as an ASCII file, and read into R using the raster 
package [81]. The predict function was used to compute 
the model predictions and the result was converted to a 
raster file.

Table 2  Model evaluation results for the boosted regression trees models

Numbers in parentheses are number of trees, interaction depth (maximum nodes per tree), shrinkage (learning rate) and n.minobsinnode 
(minimum number of observations in terminal node of a tree)

Model Training Testing

Accuracy Specificity Sensitivity Kappa ROC Accuracy Specificity Sensitivity Kappa ROC

Most accurate (2000, 6, 0.006, 
8) 111 variables

1 1 1 1 1 0.830 0.923 0.429 0.387 0.756

1SE (1000, 2, 0.012, 10)
111 variables

0.966 1 0.82 0.881 0.999 0.821 0.912 0.429 0.368 0.764

1SE (1000, 2, 0.012, 10)
30 variables

0.966 1 0.82 0.881 0.998 0.839 0.934 0.429 0.407 0.772



Vol:.(1234567890)

Research Article SN Applied Sciences          (2020) 2:1073  | https://doi.org/10.1007/s42452-020-2849-2

2.3  Geochemical modeling

Geochemical models using the PHREEQC (pH Redox Equi-
librium in C language) [82, 83] a computer program for 
simulating chemical reactions and transport processes, 
were used to investigate the hypothesis that increased 
iron fouling occurs in areas with greater SC of drainage 
water (road-salt deicer application is the assumed source 
of elevated SC). Hypothetical models, based on data col-
lected during this and other related studies, were set 
up to simulate the effects of pyrite oxidation and cation 
exchange processes caused by runoff with high salinity 
flowing along and/or infiltrating rock-fill generated from 
sulfidic rock cuts in NH. The models include a hypotheti-
cal starting groundwater solution (GW) and a hypotheti-
cal road-salt deicer effluent solution (D1) as described in 
Sect. 3.4 and Table 4. GW was mixed with D1 in a 70:30 
ratio to simulate road deicer applications. Phases used in 
the model include the minerals pyrite, calcite, and biotite, 
the gases  O2(gas) and  CO2(gas), and an exchange composi-
tion of 250 mM.

3  Results

3.1  Physicochemical results

Iron fouling was identified at 71 out of the 374 (19.0%) 
rock-fill sites [66] (Table 1). The 71 sites included 47 sites 
that had evidence of iron fouling during the imagery anal-
ysis (31 of which also had evidence of iron fouling during 
the field visit), and an additional 25 that had evidence of 
iron fouling during the field visit but did not have evidence 
of iron fouling on the imagery, thus additional field visits 
may have increased the number of iron fouling observa-
tions (Table 1). A total of 303 sites did not have evidence of 
iron fouling in either the imagery analysis or the field visit.

Of the 374 rock cut sites, 153 had some red and brown 
weathering, and all but 2 also had iron staining from 
groundwater discharge below fractures in the rock cut. 
An additional 157 sites had staining below fractures but 
did not consist of rock that had red or brown weathering 
of minerals in place. Thus, 308 sites had staining of one 
or more colors at or below fractures including 289 rock 
cuts with red and brown staining, 202 with black staining, 
23 with yellow staining and 27 with white staining. Many 
more of the rock cut sites (310) had evidence of iron (rock 
weathering, staining from discharge or both) than rock-fill 
sites that had evidence of iron fouling (71), suggesting that 
more sites have iron than end up being iron fouled.

There was quite a bit of variability in water quality prop-
erties measured in springs, seeps, and surface water adja-
cent and downgradient of 36 rock-fill sites. Values of pH 

ranged from 3.3 to 7.4; DO ranged from 0.3 to 11.9 mg/L; 
temperature ranged from 3.5 to 13 °C; and SC ranged from 
17 to 3560 µS/cm. Water quality properties were compared 
to the presence or absence of iron fouling at these rock-fill 
sites (Fig. 2). The two sample Wilcoxon rank sum test [84] 
indicates that SC is higher at sites where iron fouling was 
observed (median value of 837 µS/cm) than at sites where 
it was not observed (median = 168 µS/cm, p value = 0.012) 
(Fig. 2a). Iron fouling was only observed at sites that had 
SC greater than 320 µS/cm. DO and pH were both lower 
at sites with observed iron fouling (p-values of 0.036 and 
0.059 respectively, as calculated with the Wilcoxon rank 
sum test) (Fig. 2b, c). Further, there was a tendency toward 
anoxic water at the sites with iron fouling as indicated by 
the low values of DO in the lower 50th percentile of the 
data (Fig. 2c).

Analyses of rock weathering and staining observed 
from aerial and street view photos indicate that there is 
an increased chance of iron fouling at rock-fill sites associ-
ated with rock cuts that have red and brown weathering 
(p-value = 0.01) or red and brown staining below fractures 
line (p-value = 0.02). There is an increased probability of 
iron fouling at rock-fill sites associated with rock cuts that 
have yellow staining (p-value = 0.07) although the statisti-
cal significance is less pronounced likely due to the rela-
tively small number of sites with yellow staining (n = 23). 
Sites with black and white staining did not have a statisti-
cally significant increased presence of iron fouling.

3.2  Statistical modeling

A model that was within 1SE of the most accurate model 
from the cross-validation tuning was selected as the final 
model (Table 2). In this study, the selected model had bet-
ter prediction metrics for the testing data compared to the 
most accurate model from cross-validation tuning.

The number of predictor variables used in the final 
model was reduced from 111 to 30 by sequentially 
removing the variable of least influence and testing the 
predictive capability of the model on testing data with 
the remaining variables. For this dataset the 1SE model 
with 30 variables predicting to testing data had slightly 
higher accuracy, specificity, Kappa, and ROC values than 
the model with all 111 variables (Table 2).

Seventeen of the 30 variables in the final model include 
stream sediment concentrations of metal oxides and trace 
metals, and steam water pH, alkalinity, and SC from Rob-
inson et al. [72]. These stream sediment and stream water 
values were interpolated between sampling points for a 
wall to wall coverage of NH [72]. Ten of the variables in the 
final model are elevation and topographic characteristics 
derived from DEMs at the 1:24,000 and 1:250,000 scale 
[76]. The three remaining variables in the model are the 
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mean annual precipitation, occurrence of metamorphic 
bedrock, and the modeled probability of obtaining 40 gal-
lons of water per minute from a 400-foot-deep bedrock 
well. The model variables and their relative influence are 
presented in Table 3.

The field measurements of pH and SC do not corre-
spond to interpolated values from stream water used to 
make the statistical model. The SC values from Robinson 
et al. [72] are generally much lower than the field meas-
urements. The highest value for SC from Robinson et al. 
[72] that corresponds to field measurement locations is 
208 µS/cm. Only four of the 36 field locations had meas-
ured SC values below 208 µS/cm. The pH values also vary 
between the values used to make the model and those 
measured at field locations with no discernible pattern 
between the values. These differences are not surprising as 
the values used in the model are generally representative 
of background conditions, were not collected to identify 
hot spots, and were interpolated over large areas. Thus, the 
values used to make the model will not necessarily agree 
with measurements at specific locations and, in fact, were 
generally inversely related.

Partial dependence plots for the variables in the final 
model provide insights into the relationships between 
each variable and the model probability outcomes [85]. 
The aluminum oxide concentration in stream sediments 
has the largest relative influence on the final BRT model 
(8.97%), followed by the silicon dioxide concentration in 
stream sediments (8.36%) (Table 3). The partial depend-
ence plots for these two variables show a similar pattern 
with respect to model predictions where higher concen-
trations are associated with a higher probability of iron 
fouling (Fig. 3).

The remaining 28 variables have between 7.44 and 
1.18% relative influence on the model (Table 2). The par-
tial dependence plots for these variables are available in 
the Supplementary Materials Figures S1A–S1AB. General 
patterns shown by these plots indicate that the probabil-
ity of iron fouling increases with increases in stream sedi-
ment concentrations of lead, barium, arsenic, strontium, 
and mercury (Figures S1A, S1G, S1M, S1V, and S1X). The 
probability of iron fouling also increases with increases 
in surface elevation, mean annual precipitation, and the 
presence of metamorphic bedrock (Figures S1D, S1AA, 
S1F, and S1T). The probability of iron fouling increases 
with decreases in stream water pH and SC and stream sedi-
ment concentrations of zinc (Figures S1E, S1I, S1W). The 
planform curvature variables at the local (1:24,000) and 
regional (1:250,000) scales have higher probabilities of iron 

Fig. 2  Tukey box plots showing levels of a SC b pH, and c DO at 28 
rock-fill sites with observed iron fouling versus 8 rock-fill sites with 
no observed iron fouling

▸
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Table 3  Predictor variables for the final model with 30 variables and their relative influence in a boosted regression trees model to predict 
iron fouling in NH

Model variable Abbreviation Relative 
influence 
(%)

Citation

Aluminum oxide in stream sediment (wt%) al2o3_nhsp 8.97 Robinson et al. [72]
Silicon dioxide in stream sediment (wt%) si2o_nhsp 8.36 Robinson et al. [72]
Lead in stream sediment (mg/kg) pb_nhsp 7.44 Robinson et al. [72]
Iron oxide in stream sediment (wt%) fe2o3_nhsp 6.01 Robinson et al. [72]
Vanadium in stream sediment (mg/kg) v_nhsp 5.11 Robinson et al. [72]
Elevation (m) nh_dem250k 4.94 Digital elevation model (DEM) 1:250,000; USGS [76]
pH of stream water (pH units) ph_nhsp 4.03 Robinson et al. [72]
Mean annual precipitation from 1971 to 2000 (mm) nhppt71_00 3.99 PRISM [74]
Barium concentration in stream sediment (mg/kg) ba_nhsp_1 3.94 Robinson et al. [72]
Planform curvature perpendicular to the slope 

(positive values indicate surface is laterally convex; 
negative values indicate surface is laterally concave, 
zero indicates flat)

plcv_n1_nh 3.60 Digital elevation model (DEM) 1:24,000; USGS [76]

Stream water SC (microsiemens/cm) cond_nhsp_ 3.31 Robinson et al. [72]
Stream water alkalinity (milliequivalents of  H2SO4) alk_nhsp_1 3.18 Robinson et al. [72]
Copper concentration in stream sediment (mg/kg) cu_nhsp 3.01 Robinson et al. [72]
Profile curvature of the surface in the direction of 

slope (positive values indicate upwardly convex, 
negative values indicate upwardly concave, zero 
indicates flat)

procv_n1_n 2.72 Digital elevation model (DEM) 1:24,000; USGS [76]

Arsenic concentration in stream sediments as_nhsp_1 2.58 Robinson et al. [72]
Curvature of the slope (concave or convex). Profile 

and planform curvatures combined. (positive 
values indicate convex, negative values indicate 
concave, zero indicates flat)

curv_n1_nh 2.54 Digital elevation model (DEM) 1:24,000; USGS [76]

Planform curvature perpendicular to the slope (posi-
tive values indicate surface is laterally convex; neg-
ative values indicate surface is laterally concave)

plcv250nh 2.52 Digital elevation model (DEM) 1:250,000; USGS [76]

Probability of obtaining 40 gallons of water per min-
ute from a 400-foot-deep bedrock well (%)

nhbedprob 2.47 Moore et al. [75]

Profile curvature of the surface in the direction of 
slope (positive values indicate upwardly convex, 
negative values indicate upwardly concave, zero 
indicates flat)

procv250nh 2.31 Digital elevation model (DEM) 1:250,000; USGS [76]

Local angle of slope; maximum change in elevation 
from that cell to its neighbors (degrees from 0 to 
90)

slope250nh 2.29 Digital elevation model (DEM) 1:250,000; USGS [76]

Calcium oxide concentration in stream sediments 
(wt%)

cao_nhsp_1 1.96 Robinson et al. [72]

Metamorphic rock [presence (1) or absence (0)] ROCK_GPA.Meta-
morphic.Rocks.
Undivi

1.95 Robinson and Kapo [71]

Potassium oxide concentration in stream sediments 
(wt%)

k2o_nhsp 1.92 Robinson et al. [72]

Strontium concentration in stream sediments (mg/
kg)

sr_nhsp 1.86 Robinson et al. [72]

Zinc concentration in stream sediments (mg/kg) zn_nhsp 1.83 Robinson et al. [72]
Mercury concentration in stream sediments (mg/kg) hg_nhsp 1.68 Robinson et al. [72]
Sodium oxide concentration in stream sediments 

(wt%)
na2o_nhsp 1.50 Robinson et al. [72]
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fouling as they become more convex (Figures S1H, S1O). 
The local angles of slope variables have different relation-
ships with the probability of iron fouling at the regional 
and local scales. At the regional scale, the probability of 
iron fouling is greatest at the lowest slope values (Figure 
S1R), whereas at the local scale, the probability of iron foul-
ing is greatest at the highest slope values (Figure S1Z). The 
remaining variables have more complex, non-linear rela-
tionships with the probability of iron fouling.

3.3  Probability mapping

A continuous iron-fouling probability map covering 
NH was developed using the BRT model (Fig. 4). The map 

shows the probability of iron fouling occurring at any loca-
tion across the state where rock-fill used in road construc-
tion projects comes into contact with drainage. Locations 
that have a greater than 50% chance of iron fouling are 
shown in red (Fig. 4). A digital raster file of Fig. 4, which can 
be used with a GIS, is available as a part of an associated 
data release [66].

3.4  Geochemical modeling

Water in contact with sulfidic rock-fill along highways can 
cause ARD given oxic conditions. Geochemical simulations 
with PHREEQC were used to model these conditions under 
several hypothetical scenarios informed by data collected 

mg/kg milligrams per kilogram

Table 3  (continued)

Model variable Abbreviation Relative 
influence 
(%)

Citation

Local angle of slope; maximum change in elevation 
from that cell to its neighbors (degrees from 0 to 
90)

slope_n1_n 1.47 Digital elevation model (DEM) 1:24,000; USGS [76]

Elevation (m) nh_ned1arc 1.34 Digital elevation model (DEM) 1:24,000; USGS [76]
Aspect, direction of the maximum downward slope 

(degrees from 0 to 360 measured clockwise from 
north, − 1 indicates flat areas with no downslope 
direction)

asp250nh 1.18 Digital elevation model (DEM) 1:250,000; USGS [76]

Fig. 3  Partial dependence plots for a aluminum oxide; and b silicon 
dioxide. The interior tick marks along the x-axis indicate the deciles 
of the variable in the model training dataset. Additional partial 

dependence plots for the model are in Supplementary Materials 
Figures S1A–S1AB
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for this study. The oxidative dissolution of pyrite causes 
increased acidity, and under oxic conditions, the oxidation 
of ferrous iron, and precipitation of Fe (hydr)oxides such 
as goethite. Field data from this study suggest that areas 
with locally high SC and low pH which could result from 
pyrite oxidation and deicer salts, have higher incidences 
of iron fouling.  SC and pH are also variables in the statis-
tical model. We focus on the pH and SC variables in the 
geochemical model because they are easily measured in 
the field. With increased deicer concentrations, elevated 
dissolved  Na+ and other cations replace exchangeable 
cations (including  FeX2 and HX), resulting in decreased pH, 
and increased dissolved Fe(II), which oxidizes to Fe(III). The 
dissolved Fe(III) precipitates out as the water is buffered 

and pH rises, as simulated using calcite as an equilibrium 
phase. Carbonate and sulfide minerals are highly reactive 
and have a disproportionately large effect on water chem-
istry compared to other bedrock minerals in this region 
[65]. Highway runoff from road deicers commonly con-
tains high concentrations of Na, Ca, and other ions that 
can cause cation exchange [47].

The models include a starting groundwater solution 
(GW) based on median major constituent concentrations 
for 28 samples collected from supply wells drilled in cal-
careous metasedimentary rocks in NH and Maine as a part 
of the USGS National Water-Quality Assessment (NAWQA) 
New England Coastal Basins (NECB) Major Aquifer Study 
(lithogeochemical group  Mc in [7]; Table 4). These wells 
were used because it was noted that rock-fill locations in 
this type of rock tended to have iron fouling. This lithogeo-
chemical group is primarily located in the southeastern 
part of NH and the southern part of Maine. The ground-
water is assumed to be oxic, with a DO concentration of 
7 mg/L (or 0.44 mM (mM)) and low dissolved iron concen-
trations (0.2 mg/L or 0.002 mM). The models used an initial 
exchange composition of 250 mM, but then the exchange 
sites were equilibrated with the GW solution or the mix-
ture of GW with highway deicing runoff (D1).

The primary model demonstrates the following:

Fig. 4  Probability of iron fouling occurring at any location across 
NH if rock quarried from that location is used as fill and comes into 
contact with drainage

Table 4  Solution compositions used in PHREEQC models of 
groundwater and highway deicing runoff reactions with rock-fill 
along roadways in NH

GW groundwater; D1 deicing effluent solution 1; Ca calcium; Cl 
chloride; Fe iron; K potassium; Mg magnesium; Na sodium; O(0) dis-
solved oxygen; S(6) sulfate; mM millimoles per kilogram of solution
a The groundwater solution, GW, was based on median major con-
stituent concentrations for 28 samples collected in NH for the U.S. 
Geological Survey (USGS) National Water-Quality Assessment 
(NAWQA) [7]
b D1, represents a stormwater runoff sample taken from I-95 in Con-
necticut after deicers halite and  CaCl2 were applied [87]; water tem-
perature was modified to 20 °C, typical summer air temperature in 
NH

Solution composition GWa D1b

mM mM

pH 7.75 6.0
Temperature (°C) 11 20
Alkalinity 1.96 0.084
Ca 0.65 0.80
Cl 0.28 22.6
Fe 0.027 0.027
K 0.037 0.037
Mg 0.24 0.29
Na 0.48 19.6
O(0) 0.44 0.44
S(6) 0.16 0.10
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(1) Initial increase in aqueous Fe and  SO4 by pyrite oxida-
tion;

(2) Equilibrium exchange that moves some aqueous Fe 
to solid exchange sites;

(3) Equilibration with the atmosphere, goethite, and 
calcite, which oxidizes aqueous Fe and precipitates 
goethite;

(4) Mixing GW with highway deicing effluent results in 
increased Na cation exchange; and

(5) Equilibration of the GW-D1 mixture with exchange 
sites and the same phases in (3) results in release of 
exchangeable Fe and additional goethite precipita-
tion.

Model scenarios used in this study are described in 
Table 5, and more detailed results, including the (1) pri-
mary model with incremental pyrite reactions, (2) the pri-
mary model without calcite, and (3) the primary model 
with biotite instead of pyrite, are provided in Supplemen-
tary Materials Table S5, S5A, and S5B. Stormwater runoff 
sample, D1, represents a water sample taken from I-95 in 
Connecticut after halite and  CaCl2 deicers were applied 
(Table 5). The primary model includes calcite as an equilib-
rium phase, because calcite is common in the  Mc lithogeo-
chemical group and acts to buffer the pH; 208 mM of cal-
cite were allowed to dissolve. A default pe of 4.0 was used 
to define redox for the initial solution; although the DO 
measurements were available from field data, other redox 
couples required to define a representative pe were not 

Table 5  Results of forward geochemical modeling using PHREEQC

All simulation steps react groundwater (GW) with pyrite in five steps (in increments of 0, 1, 5, 10, and 50 mM); equilibrium phases  (CO2(g), 
 O2(g), goethite, and calcite); and 0.25 M of exchange sites. GW is mixed with deicer (D1) in 70:30 concentration ratio. See Table 4 for composi-
tions of GW and D1 solutions

GW groundwater; pe electron potential; DO dissolved oxygen; Fe2+ ferrous iron; Fe3+ ferric iron; O2 oxygen; CO2(g) carbon dioxide; SC specific 
conductance; µS/cm microsiemens per centimeter; mM millimoles per kilogram of solution; ppt precipitation; diss, dissolution; TDS total dis-
solved solids

Model step Reactants pH pe (mV) SC (µS/cm) Fe2+ (mM) Fe3+ (mM) Goethite 
ppt (mM)

Calcite 
diss 
(mM)

Notes

0 – 7.75 4 169 1.8E−03 0 0 0 GW composition
1 Pyrite 7.74 14.1 169 7.2E−14 1.8E−13 0 0 React with 0 mM pyrite
2 Pyrite 7.36 − 3.66 182 0.10 3.6E−10 0 0 React with 0.1 mM pyrite; 

increase in aqueous 
 Fe2+,  SO4, decrease in pH

3 Pyrite 7.23 − 3.56 195 0.50 4.3E−10 0 0 React with 0.5 mM pyrite; 
increase in aqueous 
 Fe2+,  SO4, decrease in pH

4 Pyrite 7.08 − 3.39 208 1.0 4.1E−10 0 0 React with 1 mM pyrite; 
increase in aqueous 
 Fe2+,  SO4, decrease in pH

5 Pyrite 5.9 − 2.03 468 11 2.2E−10 0 0 React with 5 mM pyrite; 
increase in aqueous 
 Fe2+,  SO4, decrease in pH

6 Exchange sites 5.9 − 2.03 2139 11 2.2E−10 11 − 21 Equilibrate GW with 
“Exchange 1”; moves 
 Fe2+ to solid exchange 
sites

7 O2(g), CO2(g), goethite, 
calcite

7.69 14.2 2286 1.4E−21 1.6E−11 0 0 Equilibrate with atmos-
phere, minerals;  Fe2+ 
ppts as goethite; 
increase in pH

8 – 7.06 14.6 2174 4.5E−13 5.4E−04 0 0 Mix GW with deicer 
effluent (70:30); TDS 
increased

9 Exchange sites 4.55 9.6 2174 10.4 1.19 12 − 11 Equilibrate mixture 
with exchangers;  Fe2+ 
exchanged off  FeX2

10 O2(g), CO2(g), goethite, 
calcite

7.72 13.9 2242 1.3E−21 1.8E−11 0 0 Equilibrate with reactants, 
more goethite ppts
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measured. This is reasonable, however, since the defined 
pe is only used in the initial speciation of a solution and all 
subsequent “reaction” calculations for a given simulation 
react to redox equilibrium. Therefore, the pe of 4 (Table 5) 
was not significant compared to that in the primary reac-
tions of the simulation.

For each model, the exchange sites, and then  O2(gas), 
 CO2(gas), goethite, and calcite (if included) were set to reach 
equilibrium with the water, and most of the dissolved iron 
was precipitated as goethite. GW was then incrementally 
reacted with pyrite, which resulted in the oxidative dis-
solution of pyrite (or biotite as shown in SI Table S5B), 
the release of  Fe2+,  H+ (acidity), and sulfate (Eq. 1), and, 
ultimately, the oxidation of  Fe2+ to  Fe3+ and precipitation 
of goethite. Siderite  (FeCO3) is supersaturated in the GW 
solution, but is undersaturated under the atmospheric 
conditions simulated for the rock-fill sites. Note that these 
models assume that all reactions progress to equilibrium.

For the primary model, the GW solution reacts with 
pyrite (steps 1–5), pH decreases from 7.75 to 5.9, and  Fe2+, 
 SO4

2−, and  H+ are released (Tables 5 and S5; Eq. 1). Next, 
the solution reacts with the exchange sites (step 6), and 
equilibrates with atmospheric conditions, calcite, and 
goethite (step 7), which results in buffered pH and the 
precipitation of dissolved iron as goethite. Aqueous  Fe2+ 
adsorbs as  FeX2 (69 mM) in step 6 and oxidizes and pre-
cipitates as goethite (11 mM) in step 7.  FeX2 is the most 
abundant exchangeable cation, followed by other divalent 
cations,  CaX2 and  MgX2. (Table S5). Some calcite is allowed 
to dissolve (190 mM), which helps buffer the pH to 7.69. 
The typical concentrations of sodium and chloride in  Mc 
bedrock groundwater are only at 0.48 to 0.28 mM (Table 4) 
and cation exchange is a negligible contribution to the 
exchange of  Fe2+ or  H+.

The next model step (8) includes the mixing of GW 
with deicer effluent at a ratio of 70:30 and equilibrium 
with exchange sites (“Exchange_2”), which causes addi-
tional release of exchangeable Fe. With deicer added, the 
dissolved  Na+ exchanges off other cations, including  Fe2+ 
and  H+, and the concentrations of  FeX2 and dissolved  Fe3+ 
decreases.

Finally, the GW-D1 mixture is set to equilibrium with  O2, 
 CO2, calcite, and goethite, aqueous  Fe2+ is oxidized and 
precipitated as 12 mM Fe, which represents the exchanged 
 FeX2. The goethite precipitated in step 10 is even greater 
than that precipitated in step 6; although the Fe in 
both cases was ultimately derived from the pyrite. The 
exchangeable iron on solid surfaces, therefore, represents 
a sizeable iron source that can potentially be mobilized 
by interaction with saline water and subsequent cation 
exchange.

Two additional models were run to determine the 
effects of conditions: (1) without calcite (SM Table S5A), 

and (2) with reaction of biotite instead of pyrite (SM 
Table S5B). The model without calcite indicates that, with-
out buffering of acidity generated by pyrite dissolution 
and the oxidation of  Fe2+, pH drops to 1.8 in the final step 
and slightly less goethite precipitates (10 mM) compared 
to the model with calcite (12 mM), as some of the iron 
remains as dissolved  Fe3+ due to the acidic conditions 
fewer calcium ions (from calcite dissolution) are available 
to mobilize exchangeable iron (SM Table S5A). The model 
run with biotite as the reacting iron source indicates high 
pH (up to 11.4), since 6 mol of  H+ are consumed for every 
mole of biotite; as a result, very low concentrations of dis-
solved and exchangeable iron are formed (SM Table S5B). 
This model uses an impure biotite with a log K from [86] 
(SM Table S5B).

4  Discussion

The presence or absence of iron fouling at rock-fill loca-
tions associated with NHDOT rock cuts determined 
through imagery analysis and field visits was the basis for 
this study. There was good agreement (86%) among iron 
fouling occurrence documented in the imagery analysis 
and from field visits. The 14% of sites that had differences 
between the imagery and the field visit (primarily iron 
fouling observed in the field that was not observed in the 
imagery) might be attributed to temporal iron occurrence 
factors or image quality (leaf off, ground cover) not exam-
ined as a part of this study. The possible change in iron 
fouling over time at a site could be investigated in future 
work.

A spatially continuous iron fouling probability map was 
developed for NH using a boosted regression tree model 
that identified geochemical, topographic, hydrologic, and 
geologic variables that best predicted the occurrence of 
iron fouling at rock-fill sites throughout the state. The 
presence of aluminum oxide  (Al2O3) and silicon dioxide 
 (SiO2 or quartz) in stream sediment as predictor variables 
in the model are notable. Quartz is typically abundant in 
siliceous, non-carbonate rocks and tends to monopolize 
the elemental composition in non-calcareous soils or 
sediments, a process known as “quartz dilution” [88, 89]. 
The presence of quartz  (SiO2) as well as aluminum oxide 
 (Al2O3) as important predictor variables in the model sug-
gests that a paucity of carbonate rocks could be associated 
with iron fouling.

The probability map developed from the model pro-
vides a preliminary desktop tool that can be used at any 
location in NH to evaluate the probability that iron fouling 
will be a concern at rock-fill sites where rock is sourced 
from the bedrock at that location. The model was devel-
oped using sites that are along roadways and may be less 
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predictive in areas away from roadways and in areas with 
limited rock cut and rock-fill locations such as the northern 
portion of the state. At sites that have a high probability of 
iron fouling based on the map, additional parameters can 
be evaluated through field visits. Iron fouling is more likely 
to occur where associated rock cuts have red and brown 
weathering or red and brown staining below fracture 
lines. These are easy parameters to observe and require no 
additional equipment. While only 3 sites had iron fouling 
without observable staining or weathering at the associ-
ated rock cut, 246 sites had weathering or staining without 
having evidence of iron fouling, suggesting that more rock 
cut sites have iron present than end up containing iron 
fouling at fill sites. This provides additional evidence that 
the presence of iron in the rock-fill may not be the limiting 
factor in the occurrence of iron fouling at many sites. Local 
hydrology and (or) geochemical conditions at a site may 
be limiting the occurrence of iron fouling in these cases.

Iron fouling was more common at sites with low pH 
that result from iron oxidation and (or) pyrite dissolu-
tion, as supported by geochemical modeling results. 
Iron fouling also was more common at sites with high SC, 
often resulting from highway deicing runoff. Geochemi-
cal models using PHREEQC show that the increased iron 
fouling of waters in areas with low pH and high SC along 
sulfidic rock cuts are likely caused by pyrite dissolution 
and exacerbated by added salts that result in greater 
cation exchange. Geochemical models with biotite as 
the iron source (not pyrite) result in alkaline conditions 
with low dissolved iron or goethite precipitated. The typi-
cal concentrations of sodium and chloride in  Mc bedrock 
groundwater are low and cation exchange is a negligible 
contribution to the exchange of  Fe2+ or  H+. Increased salt 
concentrations from deicing runoff and subsequent cation 
exchange results in greater amounts of displaced  Fe2+ that 
become oxidized and precipitated as goethite. This under-
standing could be helpful in planning road management 
alternatives with regard to deicers in locations where there 
is a high likelihood of iron fouling.

Several methods are identified for understanding pre-
liminary factors related to iron fouling at rock-fill sites 
along roadways. The methods employed here may be used 
at other locations that experience iron fouling along road-
ways. The iron fouling probability map is a broad-scale tool 
for understanding the potential for iron fouling at sites 
in NH. Additionally, identifying the processes involved in 
iron fouling and understanding the role that local hydrol-
ogy, geochemical conditions, and deicers play in the pro-
cess is the first step in the minimization of iron fouling. 
This first look at fouling statewide suggests several factors 
and processes that could be further explored with addi-
tional field-scale investigation. Field or bench testing of 
geochemical controls of deicers and pH are two important 

potential drivers of iron mobility and fouling. Addition-
ally, testing alternate deicers in iron-fouling prone areas 
may also be warranted. An area of future investigation is 
to explore the timing of application and subsequent foul-
ing. Management decisions regarding road cuts, rock-fill 
placement, site design and the use of deicers will benefit 
from this understanding.

5  Conclusion

Iron fouling in runoff from rock cuts and adjacent to 
blasted rock-fill used for roadway construction is caused 
by the oxidation of iron sulfide minerals such as pyrite, and 
the subsequent release of acidity, sulfate, and dissolved 
metals including iron. Factors affecting iron fouling in wet 
areas adjacent to roadways were investigated by collecting 
field rock cut and aqueous physicochemical data; devel-
oping geochemical models; and developing exploratory 
predictive models. Road salt was examined as a primary 
concern related to iron fouling at these road construction 
sites.

Field water quality measurements indicated that the 
occurrence of iron fouling was associated with higher 
values of SC, lower concentrations of DO and lower pH 
compared to areas without iron fouling. Geochemical 
models illustrated the mechanisms for how iron fouling of 
waters increase along roadways built with fill from sulfidic 
rock cuts due to acid generation from pyrite dissolution 
and ferrous iron  (Fe2+) oxidation; and increase in areas 
with greater SC due to deicing runoff caused by cation 
exchange. Models demonstrate how higher salinity water 
can potentially increase iron mobility and aggravate ARD 
at these sites.

The study showed that the identification of iron foul-
ing from aerial imagery is a useful screening technique for 
identifying potential iron fouling sites that can be used in 
similar studies in the future. The iron fouling probability 
map developed here will give NHDOT a tool to help predict 
and mitigate the occurrence of iron fouling at untested 
locations throughout NH. In addition, geochemical models 
provide a mechanism to better understand the relations 
between high SC and iron fouling observed in the field.

At sites that have a high probability of iron fouling 
based on the map, additional parameters can be evalu-
ated through field visits. Iron fouling is more likely to occur 
where associated rock cuts have red and brown weather-
ing or red and brown staining below fracture lines. There 
is evidence that the presence of iron in the rock-fill may 
not be the limiting factor in the occurrence of iron foul-
ing at many sites. Local hydrology and (or) geochemical 
conditions at a site may be limiting the occurrence of iron 
fouling in these cases.
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