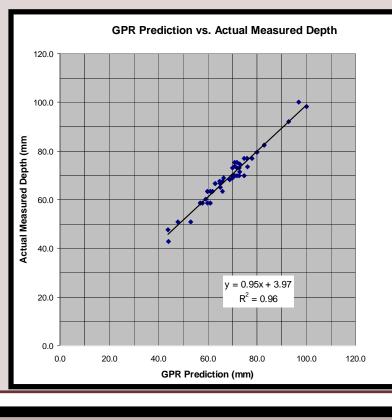


GPR for Concrete Cover Determination


	-0.00 1.00
	2.00 3.00 4.00
asuring	5.00 - ns
	^{2.00} 3.00 Processed data from a new bridge deck surface. In the top panel,
	red circles overlay the reinforcing steel reflection picks. The picks are located automatically by the system software through an algo- rithm that searches for the peak of each hyperbolic reflection in
	the data. In the bottom panel, horizontal position and depth to top of rebar are displayed with the results output to ASCII database.

• Individual GPR predictions were accurate in all cases to within 5.1 mm of actual measured cover depths. With increased technician experience, the accuracy later in the study improved to within

• GPR predictions correlated to the actual measured cover depths with

a correlation coefficient of 0.98 and a standard error of estimate of 2.2 mm

• The Department's QC/QA specification was easily adapted to the use of GPR as a concrete cover measuring device. The Department has now fully implemented this technology

Enhancing Geotechnical Information with GPR

Research was conducted in 2001-2002 to learn how well GPR could supplement or replace conventional test borings at different locations throughout New Hampshire. The objective of

• Distinguish between and accurately determine the depth to different soil layers

• Find and measure the extent of bedrock fractures and subsurface voids

• Equipment set-up is relatively simple and depending upon the existing ground surface, minimal

• The radar unit can be used at locations where a conventional drill rig could not or would have

• The subsurface information collected through GPR is continuous, so a complete profile can be

• Highly conductive soil types will absorb the radar signal, leaving little reflected energy for the

• During winter operations, cold temperatures will reduce battery life and road salt will attenuate

• It was uncommon to detect greater than two soil boundary layers because highly conductive or • Experience is required to recognize equipment limitations and effectively interpret/apply results